Return to site

Qt Signal And Slot Arguments Are Not Compatible

broken image


From Qt 5.0 onwards, Qt offers two different ways to write signal-slot connections in C++: The string-based connection syntax and the functor-based connection syntax. There are pros and cons to both syntaxes. The table below summarizes their differences.

Qt报错:static assertion failed: Signal and slot arguments are not compatible 1233; html+css+js实现简易计算器 628; 开门人与关门人.C 324; 佛瑞德的船屋,c 284; C3848 具有类型'const MyCompare'的表达式会丢失一些 const-volatile 限定符以调用'bool MyCompare::operator (int,int)' 180.

  • You can't use slots as target for callbacks or invoke a slot by name. This was certainly not a design goal of Qt signal/slots, but it makes the mechanism less powerful than C#'s delegates and creates the need for a second mechanism The connect syntax is unnecessary complicated because of the SIGNAL/SLOT macros.
  • QT Signal and slot arguments are not compatible. QT编译错误: Signal and slot arguments are not compatible. 原因如下: 信号和插槽参数不兼容。.
String-basedFunctor-based
Type checking is done at...Run-timeCompile-time
Can perform implicit type conversionsY
Can connect signals to lambda expressionsY
Can connect signals to slots which have more arguments than the signal (using default parameters)Y
Can connect C++ functions to QML functionsY

The following sections explain these differences in detail and demonstrate how to use the features unique to each connection syntax.

Type Checking and Implicit Type Conversions

String-based connections type-check by comparing strings at run-time. There are three limitations with this approach:

  1. Connection errors can only be detected after the program has started running.
  2. Implicit conversions cannot be done between signals and slots.
  3. Typedefs and namespaces cannot be resolved.

Limitations 2 and 3 exist because the string comparator does not have access to C++ type information, so it relies on exact string matching.

In contrast, functor-based connections are checked by the compiler. The compiler catches errors at compile-time, enables implicit conversions between compatible types, and recognizes different names of the same type.

For example, only the functor-based syntax can be used to connect a signal that carries an int to a slot that accepts a double. A QSlider holds an int value while a QDoubleSpinBox holds a double value. The following snippet shows how to keep them in sync:

The following example illustrates the lack of name resolution. QAudioInput::stateChanged() is declared with an argument of type 'QAudio::State'. Thus, string-based connections must also specify 'QAudio::State', even if 'State' is already visible. This issue does not apply to functor-based connections because argument types are not part of the connection.

Making Connections to Lambda Expressions

The functor-based connection syntax can connect signals to C++11 lambda expressions, which are effectively inline slots. This feature is not available with the string-based syntax.

In the following example, the TextSender class emits a textCompleted() signal which carries a QString parameter. Here is the class declaration:

Qt signal and slot arguments are not compatible to be

Here is the connection which emits TextSender::textCompleted() when the user clicks the button:

In this example, the lambda function made the connection simple even though QPushButton::clicked() and TextSender::textCompleted() have incompatible parameters. In contrast, a string-based implementation would require extra boilerplate code.

Note: The functor-based connection syntax accepts pointers to all functions, including standalone functions and regular member functions. However, for the sake of readability, signals should only be connected to slots, lambda expressions, and other signals.

Connecting C++ Objects to QML Objects

The string-based syntax can connect C++ objects to QML objects, but the functor-based syntax cannot. This is because QML types are resolved at run-time, so they are not available to the C++ compiler.

In the following example, clicking on the QML object makes the C++ object print a message, and vice-versa. Here is the QML type (in QmlGui.qml):

Here is the C++ class:

Here is the code that makes the signal-slot connections:

Note: All JavaScript functions in QML take parameters of var type, which maps to the QVariant type in C++.

When the QPushButton is clicked, the console prints, 'QML received: 'Hello from C++!'. Likewise, when the Rectangle is clicked, the console prints, 'C++ received: 'Hello from QML!'.

See Interacting with QML Objects from C++ for other ways to let C++ objects interact with QML objects.

Using Default Parameters in Slots to Connect to Signals with Fewer Parameters

Usually, a connection can only be made if the slot has the same number of arguments as the signal (or less), and if all the argument types are compatible.

The string-based connection syntax provides a workaround for this rule: If the slot has default parameters, those parameters can be omitted from the signal. When the signal is emitted with fewer arguments than the slot, Qt runs the slot using default parameter values.

Functor-based connections do not support this feature.

Suppose there is a class called DemoWidget with a slot printNumber() that has a default argument:

Using a string-based connection, DemoWidget::printNumber() can be connected to QApplication::aboutToQuit(), even though the latter has no arguments. The functor-based connection will produce a compile-time error:

To work around this limitation with the functor-based syntax, connect the signal to a lambda function that calls the slot. See the section above, Making Connections to Lambda Expressions.

Selecting Overloaded Signals and Slots

With the string-based syntax, parameter types are explicitly specified. As a result, the desired instance of an overloaded signal or slot is unambiguous.

In contrast, with the functor-based syntax, an overloaded signal or slot must be casted to tell the compiler which instance to use.

For example, QLCDNumber has three versions of the display() slot:

  1. QLCDNumber::display(int)
  2. QLCDNumber::display(double)
  3. QLCDNumber::display(QString)

To connect the int version to QSlider::valueChanged(), the two syntaxes are:

See also qOverload().

© 2020 The Qt Company Ltd. Documentation contributions included herein are the copyrights of their respective owners. The documentation provided herein is licensed under the terms of the GNU Free Documentation License version 1.3 as published by the Free Software Foundation. Qt and respective logos are trademarks of The Qt Company Ltd. in Finland and/or other countries worldwide. All other trademarks are property of their respective owners.

This example was ported from the PyQt4 version by Guðjón Guðjónsson.

Introduction

In some applications it is often necessary to perform long-running tasks, such as computations or network operations, that cannot be broken up into smaller pieces and processed alongside normal application events. In such cases, we would like to be able to perform these tasks in a way that does not interfere with the normal running of the application, and ensure that the user interface continues to be updated. One way of achieving this is to perform these tasks in a separate thread to the main user interface thread, and only interact with it when we have results we need to display.

This example shows how to create a separate thread to perform a task - in this case, drawing stars for a picture - while continuing to run the main user interface thread. The worker thread draws each star onto its own individual image, and it passes each image back to the example's window which resides in the main application thread.

The User Interface

We begin by importing the modules we require. We need the math and random modules to help us draw stars.

The main window in this example is just a QWidget. We create a single Worker instance that we can reuse as required.

The user interface consists of a label, spin box and a push button that the user interacts with to configure the number of stars that the thread wil draw. The output from the thread is presented in a QLabel instance, viewer.

We connect the standard finished() and terminated() signals from the thread to the same slot in the widget. This will reset the user interface when the thread stops running. The custom output(QRect, QImage) signal is connected to the addImage() slot so that we can update the viewer label every time a new star is drawn.

The start button's clicked() signal is connected to the makePicture() slot, which is responsible for starting the worker thread.

We place each of the widgets into a grid layout and set the window's title:

The makePicture() slot needs to do three things: disable the user interface widgets that are used to start a thread, clear the viewer label with a new pixmap, and start the thread with the appropriate parameters.

Since the start button is the only widget that can cause this slot to be invoked, we simply disable it before starting the thread, avoiding problems with re-entrancy.

We call a custom method in the Worker thread instance with the size of the viewer label and the number of stars, obtained from the spin box.

Whenever is star is drawn by the worker thread, it will emit a signal that is connected to the addImage() slot. This slot is called with a QRect value, indicating where the star should be placed in the pixmap held by the viewer label, and an image of the star itself:

We use a QPainter to draw the image at the appropriate place on the label's pixmap.

The updateUi() slot is called when a thread stops running. Since we usually want to let the user run the thread again, we reset the user interface to enable the start button to be pressed:

Now that we have seen how an instance of the Window class uses the worker thread, let us take a look at the thread's implementation.

The Worker Thread

The worker thread is implemented as a PyQt thread rather than a Python thread since we want to take advantage of the signals and slots mechanism to communicate with the main application.

We define size and stars attributes that store information about the work the thread is required to do, and we assign default values to them. The exiting attribute is used to tell the thread to stop processing.

Qt Signal And Slot Arguments Are Not Compatible Phones

Each star is drawn using a QPainterPath that we define in advance:

Before a Worker object is destroyed, we need to ensure that it stops processing. For this reason, we implement the following method in a way that indicates to the part of the object that performs the processing that it must stop, and waits until it does so.

Qt Signal And Slot Arguments Are Not Compatible Modems

For convenience, we define a method to set up the attributes required by the thread before starting it.

The start() method is a special method that sets up the thread and calls our implementation of the run() method. We provide the render() method instead of letting our own run() method take extra arguments because the run() method is called by PyQt itself with no arguments.

The run() method is where we perform the processing that occurs in the thread provided by the Worker instance:

Information stored as attributes in the instance determines the number of stars to be drawn and the area over which they will be distributed.

Qt Signal And Slot Arguments Are Not Compatible Devices

We draw the number of stars requested as long as the exiting attribute remains False. This additional check allows us to terminate the thread on demand by setting the exiting attribute to True at any time.

The drawing code is not particularly relevant to this example. We simply draw on an appropriately-sized transparent image.

For each star drawn, we send the main thread information about where it should be placed along with the star's image by emitting our custom output() signal:

Qt Signal And Slot Arguments Are Not Compatible To Be

Since QRect and QImage objects can be serialized for transmission via the signals and slots mechanism, they can be sent between threads in this way, making it convenient to use threads in a wide range of situations where built-in types are used.

Running the Example

We only need one more piece of code to complete the example:





broken image